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Abstract. It is well known that image assessment is task dependent. This is
demonstrated in the context of images reconstructed from sparse data using MEM-
SYS3. We demonstrate that the problem of determining the regularization- or hy-
perparameter� has a task-dependent character independent of whether the images
are viewed by human observers or by classical or neural-net classi�ers. This issue
is not addressed by Bayesian image analysts. We suggest, however, that knowledge
of the task, or the use to which the images are to be put, is a form of prior knowl-
edge that should be incorporated into a Bayesian analysis. We sketch a frequentist
approach that may serve as a guide to a Bayesian solution.
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1. Introduction

Images are generally produced for the purpose of performing visual tasks. A visual
task typically consists of an interpretation of an image and a decision about its
content. The major premise in the �eld of image assessment is that the ranking of
imaging systems is task dependent. This point was demonstrated in the literature
about twenty-�ve years ago [1] and a consensus on the issue developed almost
immediately. Nevertheless, the point is rarely addressed in the Bayesian and Max-
imum Entropy communities. It is the purpose of the present work to demonstrate
the task dependence of image assessment in the context of image reconstruction
from sparse data using a maximum entropy method. We shall see that the search
for an optimal regularization parameter in this method does not have a unique solu-
tion: the solution depends on the task. We shall compare frequentist and Bayesian
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approaches to the issue and will o�er a frequentist approach to the problem that
may serve as a guide to a Bayesian solution.

2. Tasks and observers

We consider two very broad categories of imaging tasks: lesion or target detection,
and target discrimination or classi�cation. A simple example of a detection task
in medical imaging is the task of determining whether a site in an image contains
a lesion or is only representative of normal background. A simple example of a
discrimination task is the task of viewing a blood vessel and determining whether
it has signi�cant narrowing (stenosis) or not. For the special case where an imaging
system is linear and shift-invariant, the detection task can be considered as a task
that is concentrated in the low spatial frequencies. The discrimination task, how-
ever, requires no low spatial-frequency information: it is a mid- to high-frequency
task.

In the �eld of image assessment a number of classes of image observers are
considered. An observer is de�ned in terms of how the task is implemented or
performed. Here we limit ourselves to binary tasks and the case where the signal
is known exactly (SKE). In this paradigm the observer is focused on the region of
interest and has to decide which of two hypothesized states gave rise to the data,
e.g., lesion present, or only background present. (Performance of some complex
tasks is related to performance of SKE tasks in Refs. 2 and 3.) The most common
observer is the human, but there are other ways of realizing an observer using a
machine or computer algorithm. These include various matched �lters, classical
decision rules based on the likelihood function (the foundation for the matched
�lters [4]), the \proper" Bayesian rule based on the ratio of posterior proabilities
for the two hypotheses given the data [5], and a growing number of classical and
neural-net extensions of these decision rules.

Once a task and an observer are de�ned, standard methods from statistical
decision analysis can be applied to assess the performance of the task by the
observer. In the present work we investigated the performance of human and ma-
chine observers on lesion detection and classi�cation tasks as a function of the
regularization parameter in the reconstruction algorithm.

3. Image \acquisition" and reconstruction

The present work is an extension and interpretation of previous work in this series
that considered limited angle tomography (eight views over 180 degrees). The data
are derived from a simulation of parallel-projection image acquisitions, 128 samples
per projection, and additive Gaussian noise. Images reconstructed from such data
will be corrupted by artifacts due to the small number of projections or views, as
well as by the additive measurement or detection noise. For additional details, see
[5-7].

We concentrate here on MEMSYS3, a Bayesian method of regularized recon-
struction due to the Cambridge school of Gull and Skilling [8,9]. The algorithm
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includes a numerically e�cient method for minimizing a functional F; where

F = 1

2
�2 � �S : (1)

The term involving �2 is the usual measure of mis�t between the data and the
reconstruction f̂ (referred to the data domain). The quantity S in the second term

is the Cambridge adaptation of the Shannon entropy (�
P

i f̂i ln f̂i). The second
term may thus be thought of as the exponent in an entropic prior probability
distribution or, rather, a family of entropic prior probability distributions in the
(hyper-) parameter �. The parameter � may be thought of as a regularization
parameter that determines the degree of smoothness in the �nal reconstruction.
We shall now give several views on the determination of the value of �.

4. Frequentist and Bayesian perspectives

In classical statistics, or the so-called frequentist perspective, one is interested in
the long-term average behavior of a method of estimation or inference. In the con-
text of image assessment, one assumes that the imaging system or reconstruction
algorithm is expected to be used repeatedly under similar conditions, and that
there is an opportunity to simulate or experiment with the system to determine
its long-term average performance. One then chooses the regularization parameter,
� in the present case, that gives the best long-term performance. In our approach,
performance is speci�ed in terms of how well an observer of the images performs
the task of interest. There is no controversy over such an approach to experimental
design when one is in the repeated-use mode and has the opportunity to study
average performance [10].

In the Bayesian perspective, one usually does not have the luxury of long-term
experience. One has only the present data set and one's principles, i.e., that the
only rational approach to such limited-data-set problems is by way of probability
theory. In the Gull and Skilling approach, the regularization parameter is deter-
mined from the current data set by maximizing the posterior probability of �. In
the \classic" implementation of MEMSYS3 this gives rise to the relationship

�2 +G = N : (2)

The interpretation of this expression is as follows. The aimed-for value of the mis�t,
�2, plus a parameterG, matches the number of independentmeasurements,N . The
quantity G is referred to as the number of \good"measurements and is determined
with � in a self-consistent way from the number of signi�cant eigenvalues of a
weighted version of the matrix Ht��1H: The weighting will be given in Section
10 below. Here, H is the system response matrix that characterizes the forward
problem, � is the covariance matrix of the measurements, and the value of � is
used in the determination of the signi�cance of the eigenvalues.

Setting G = 0 in Eq. (2) yields the early \historic" implementation of MaxEnt
where the target value of �2 is the number of independent measurements. Skilling
and Gull [9] point out that the historic version is based on the frequentist consid-
eration that the expected value of �2 over the ensemble of experiments is N . They
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and other investigators realized that the historic approach often led to under�tting
of the data. In the classic version, the higher the quality of the measurements in
terms of the parameter G, the closer one is permitted to �t the data. The clas-
sic solution seems intrinsically reasonable, even setting aside its assumptions and
subtlety.

5. Decision-theoretic measures of task performance

When studying binary tasks, for example decisions of \normal" vs \abnormal" or
patent vs occluded artery, one is able to use the accepted, in fact now required,
standard of image assessment in the medical imaging community, namely, the
curve of true-positive fraction vs false-positive fraction of responses in the binary
classi�cation. This curve is referred to as the receiver operating characteristic
(ROC) curve. We follow the usual approach of taking the area under the ROC
curve, Az, as a summary �gure of merit for our studies. This measure is equivalent
to the true-positive fraction averaged over all false-positive fractions. It may also be
obtained as the percent correct in a two-alternative forced-choice experiment. It is
convenient to use an inverse error function to convert from Az to the detectability
index, da; which may be thought of as the integrated signal strength in units of
the standard deviation of its underlying noise distribution (a decision-theoretic
signal-to-noise ratio). The uncertainty in the determination of da due to the use
of a �nite number of image samples is usually estimated from the number of
image samples and the sampling statistics of the binomial distribution. See [5-7]
for further details.

6. Results: Detection Task

The detection task we studied is an idealization of a low-contrast lesion-detection
task in a background of measurement noise and artifacts generated by the presence
of high-contrast structures. In Fig. 1a we show one realization of a phantom for
generating images of this class. Ten randomly placed low-contrast \lesions" can
be seen as faint disks. These are the lesions or disks to be detected. Ten randomly
placed high-contrast disks or lesions, which serve as the major source of recon-
struction artifacts, are easily seen. In Figs. 1b through 1e we show the results of
reconstructing images over a range of values of �. At the highest value of � the
reconstructions are smooth; at the lowest value the reconstruction is pointillist in
texture. In the limit of very small � the reconstruction may be thought of as the
maximum likelihood reconstruction with a positivity constraint.

In Fig. 2 we give results for da for three classes of observers. Among the clas-
sical and Bayesian observers, those derived from the likelihood function and those
derived from the ratio of posterior probabilities performed similarly [6,7]; the best
average results are shown and are labelled \machine observer". Results for ma-
chine, neural-net, and human observer show a similar fallo� from the maximum
level of performance at low values of � to the weakest level of performance at high
values of �. The \classic" implementation of MEMSYS3 yields a value of � that
corresponds to a point on the shoulder of the performance curves near the plateau.
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Figure 1. (a) One realization of a scene used for generating images for the detection task. (b)
through (e) - MEMSYS3 reconstructions with � = 0.002, 0.21, 1.8, and 20.

Figure 2. Decision-theoretic signal-to-noise ratio (da) for performance of the detection task by
machine, back-propagation neural network, and human observers. The total number of indepen-
dent image trials for a given observer is the value N shown. The neural network was trained on
N

2
and tested on the other N

2
. The error bars represent �1�.
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7. Results: Discrimination Task

We selected a discrimination task that is an elaboration of the Rayleigh task of
discriminating between a single star or object and a doublet. This task also serves
as an idealization of the task of determining whether a blood vessel is unobstructed
or is narrowed. In Fig. 3a we show one realization of a phantom for generating
images of this class. There are eight cigar-shaped singlets and eight doublets.
Each class of objects serves as a source of reconstruction artifact generation for the
detection of the other. In Figs. 3b through 3e we show the results of reconstructing
images for various values of �.

In Fig. 4 we give results for da for the three classes of observers. These results
all show a similar maximum of performance in the neighborhood of � = 1.0, with a
fall-o� from this maximum for smaller and larger values of �. It is of interest that
the \classic" value of � occurs close to the position of the peak of these curves.
The small di�erence between the classical or Bayesian machine and the neural-net
observers is within the error bars.

8. Summary from frequentist perspective

These results reinforce and extend the remarkable similarity in performance noted
in earlier work among all three classes of observers for a given task. This is satisfy-
ing because an original goal of these investigations was to �nd visual-like machine
observers, i.e., algorithms that performed similarly to human observers.

More important for our present purposes, however, is the comparison between
performance on di�erent tasks. Comparing Figs. 2 and 4 we see that the �-
dependence of the task performance for the detection task is qualitatively di�erent
from the �-dependence of the task performance for the Rayleigh-like discrimina-
tion task for all three classes of observers. (Similar di�erences on a related problem
have been observed by Abbey and Barrett [11].) From the frequentist perspective,
then, we can say that the problem of selecting the optimal regularization parame-
ter has a task-dependent character. This task-dependence is not addressed in the
Bayesian formulations of the regularization problem. The knowledge of the task re-
quired of an imaging system or image reconstruction algorithm, however, is a form
of prior information that is suitable for inclusion in a proper Bayesian formulation.
We are not yet able to present such a Bayesian formulation. We are, however, able
to analyze the structure of the present frequentist treatment with a view toward an
ultimate Bayesian solution. The remainder of this paper summarizes our present
understanding of the relevant issues.

9. The importance of eigenvectors

The eigenvalues of the matrix Ht��1H were seen in Sec. 4 to play an important
role in the Bayesian solution to the regularization problem. We contend, however,
that the eigenvectors are the relevant quantities when task performance is brought
into consideration. We brie
y review our experience with a broad class of tasks.
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Figure 3. (a) One realization of a scene used for generating images for the Rayleigh discrimi-
nation task. (b) through (e) - MEMSYS3 reconstructions with � = 0.05, 0.6, 4.03, and 19.51.

Figure 4. Decision-theoretic signal-to-noise ratio (da) for performance of the discrimination task
by machine, back-propagation neural network, and human observers. Otherwise, as in Fig. 2.
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Hanson [12] considered a wide class of problems where an ideal observer would
suppress the low spatial-frequency components of an image. Images in which the
background is inhomogeneous (variable, lumpy, etc.) are members of this class
because inclusion of the low-frequency components would only lead to the accu-
mulation of irrelevant noise. It is easy to show that the task of determining the
separation of two lesions, the task of determining whether a stenosis (a vessel nar-
rowing) is present, and many other Rayleigh-like tasks are also members of this
class. Their performance not only requires no low spatial-frequency information,
it is even impeded by the presence of such information. A task representative of
some linear shift-invariant members of this class was analyzed by Myers et al. [13].
They showed that the optimal linear �lter for the task is a bandpass �lter that
maximizes the detection of Fourier-domain eigenvectors within a task-dependent
band of frequencies; it suppresses the detection of eigenvectors outside this band so
as to maximize noise rejection in irrelevant bands. Optimal signal detection here
does not depend on any measure of eigenvalue number. It depends on optimal
detection of the eigenvectors of interest. This feature of the problem is ignored in
all Bayesian approaches that we are aware of.

In particular, the allowable stopping points of the MEMSYS3 algorithm in its
search for an optimal � proceed from very large values where, in e�ect, only low
spatial frequencies are reconstructed, to very small values where, in e�ect, low,
intermediate, and high spatial frequencies are reconstructed. However, what is
needed for Rayleigh-like tasks is a means to concentrate on a mid-band of frequen-
cies. Allowing very low and very high spatial frequencies into the reconstruction
will swamp all of the visual-like image observers (in ours and related work) with
irrelevant noise.

The eigenvector issue is not unique to the imaging problem. The issue should
be treated in neural-net design and in countless other signal and image processing
problems where principles for optimal order determination or optimal stopping
parameters are sought.

10. Toward a solution

We end with a sketch of a solution to this problem. The solution will require some
fundamentals from statistical decision theory.

The frequentist �gure of merit for ideal detection of a di�erence signal �f
(a vector) by an imaging system whose measurements are characterized by the
matrix ��1m = Ht��1H, in the case where there is no appreciable artifactual
noise and the measurement noise is additive and Gaussian, is a detection theoretic
signal-to-noise ratio (SNR) given by

d2a = �f tHt��1H�f = �f t��1m �f : (3)

(See, e.g., [14, 15].) This �gure of merit may be recognized as the Hotelling trace;
it is proportional to the Mahalanobis distance between the two classes whose mean
di�erence image is �f . It may be generalized for a Gaussian ensemble of signals
with known covariance matrix �p by replacing �m with [��1m +��1p ]�1.
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In the present paper the mean di�erence signal for the detection task is a
template with a pro�le given by that of the expected lesion; in the discrimination
task it is a template with a pro�le given by the expected di�erence of the mean
signals of the two classes. The observer mask that will achieve the optimal �gure
of merit in the limit of many tomographic views is the prewhitening matched
�lter given by �f tHt��1: This �lter selects out from the data only the vectors
(eigenvectors or singular vectors) required for its task. It discards all others. The
present paper is a demonstration of a frequentist search for optimal linear and
nonlinear observer decision functions (as well as regularization parameters) for
the sparse-view version of this problem.

Some of the machinery for evaluating and optimizing such �gures of merit
already exists in the powerful MEMSYS packages. There, Bayesian �gures of merit
play a central role. For example, the matrix designated A that generates the
eigenvalues contributing to G has structure similar to Eq. (3):

A = [̂f
1

2 ]tHt��1H [̂f
1

2 ] : (4)

Here, [̂f ] is a diagonal matrix containing the current estimate of the object; [̂f
1

2 ]
is the corresponding square-root matrix. The number of signi�cant eigenvalues of
A, on a scale determined by �, is the parameter G referred to earlier. In fact,
�A�1 is the MEMSYS analog of the quotient ��1p �m that determines the degree
of regularization in Gaussian MAP estimation [4].

A fundamental di�erence between Eqs. (3) and (4) can be noted in the �rst and
last factors of these expressions. In the case of Eq. (3) these factors are frequentist
or long-term average quantities that specify the task. In the case of the Bayesian
result in Eq. (4) they are estimates from the present data set alone. From the point
of view of the present paper, optimal reconstruction must address the problem of
preferentially visualizing the eigenvectors required for the task, in the spirit of
the optimal �lter behind Eq. (3); it is not su�cient to count the eigenvalues of a
regularization matrix such as A in Eq. (4). The details remain to be worked out.
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